三年级上册数学趣味题10道

网上有关“三年级上册数学趣味题10道”话题很是火热,小编也是针对三年级上册数学趣味题10道寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。

黑兔、黄兔和白兔三只兔子在赛跑。黑免说:“我跑得不是最快的,但比白兔快。”请你说说,谁跑得最快?谁跑得最慢? ( )跑得最快,( )跑得最慢。

三个小朋友比大小。根据下面三句话,请你猜一猜,谁最大?谁最小? (1)芳芳比阳阳大3岁; (2)燕燕比芳芳小1岁; (3)燕燕比阳阳大2岁。 ( )最大,( )最小。

根据下面三句话,猜一猜三位老师年纪的大小。

王老师说:“我比李老师小。” (2)张老师说:“我比王老师大。”

李老师说:“我比张老师小。” 年纪最大的是( ),最小的是( )。

光明幼儿园有三个班。根据下面三句括,请你猜一措,哪一班人数最少?哪一班人数最多? (1)中班比小班少; (2)中班比大班少; (3)大班比小班多。 ( )人数最少,( )人数最多。

三个同学比身高。 甲说:我比乙高; 乙说:我比丙矮; 丙:说我比甲高。 ( )最高,( )最矮。

四个小朋友比体重。 甲比乙重,乙比丙轻,丙比甲重,丁最重。

这四个小朋友的体重顺序是: ( )>( )>( )>( )。

小清、小红、小琳、小强四个人比高矮。

小清说我比小红高;小琳说小强比小红矮; 小强说:小琳比我还矮。

请按从高到矮的顺序把名字写出来: ( )、( )、( )、( )。

有四个木盒子。蓝盒子比黄盒子大;蓝盒子比黑盒子小;黑盒子比红盒子小。请按照从大到小的顺度,把盒子排队。 ( )盒子,( )盒子,( )盒子,( )盒子。

张、黄、李分别是三位小朋友的姓。根据下面三句话,请你猜一猜,三位小朋友各姓什么?

甲不姓张; (2)姓黄的不是丙;(3)甲和乙正在听姓李的小朋友唱歌。 甲姓( ),乙姓( ),丙姓( )。

张老师把红、白、蓝各一个气球分别送给三位小朋友。根据下面三句话,请你猜一猜,他们分到的各是什么颜色的气球?

小春说:“我分列的不是蓝气球。”

小宇说:“我分到的不是白气球。”

小华说:“我看见张老师把蓝气球和红气球分给上面两位小朋友了。” 小春分到( )气球。小宇分到( )气球。小华分到( )气球。

甲、乙、丙三个小朋友赛跑。得第一名的不是甲,得第二名的不是丙,乙看见甲和丙都在自己的前面到达了终点。 甲得了第( )名,乙得了第( )名,丙得了第( )名。

A、B、 C三名运动员在一次运动会上都得了奖。他们各自参加的项目是篮球、排球和足球。现在我们知道:(1)A的身材比排球运动员高;(2)足球运动员比C和篮球运动员都矮。诸你想一想: A是( )运动员,B是( )运动员,C是( )运动员。

三年级的数学趣味题有哪些

鸡兔同笼,这个问题,是我国古代著名趣题之一。大约在1500年前,《孙子算经》中就记载了这个有趣的问题。书中是这样叙述的:“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?”这四句话的意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头;从下面数,有94只脚。求笼中各有几只鸡和兔? 假设法: 解: 假设全是鸡:2×35=70(只) 比总脚数少的:94-70=24 (只) 它们腿的差:4—2=2(条) 24÷2=12 (只) ------ 兔 35-12=23(只) ------鸡 方程: 解:设兔有x只,则鸡有35-x只。 4x+2(35-x)=94 4x+70-2x=94 2x=24 x=12 35-x=35-12=23 答:兔有12只,鸡有23只。 我国古代《孙子算经》共三卷,成书大约在公元5世纪。这本书浅显易懂,有许多有趣的算术题,比如“鸡兔同笼”问题: 今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何? 题目中给出了鸡兔共有35只,如果把兔子的两只前脚用绳子捆起来,看作是一只脚,两只后脚也用绳子捆起来,看作是一只脚,那么,兔子就成了2只脚,即把兔子都先当作两只脚的鸡。鸡兔总的脚数是35×2=70(只),比题中所说的94只要少94-70=24(只)。 现在,松开一只兔子脚上的绳子,总的脚数就会增加2只,即70+2=72(只),再松开一只兔子脚上的绳子,总的脚数又增加2,2,2……,一直继续下去,直至增加24,因此兔子数:24÷2=12(只),从而鸡有35-12=23(只)。 我们来总结一下这道题的解题思路:先假设它们全是鸡,于是根据鸡兔的总数就可以算出在假设下共有几只脚,把这样得到的脚数与题中给出的脚数相比较,看看差多少,每差2只脚就说明有1只兔,将所差的脚数除以2,就可以算出共有多少只兔。概括起来,解鸡兔同笼题的基本关系式是:兔数=(实际脚数-每只鸡脚数×鸡兔总数)÷(每只兔子脚数-每只鸡脚数)。类似地,也可以假设全是兔子。 我们也可以采用列方程的办法:设兔子的数量为X,鸡的数量为Y 那么:X+Y=35那么4X+2Y=94 这个算方程解出后得:兔子有12只,鸡有23只。

[编辑本段]例题

1.班主任张老师带五年级(7)班50名同学栽树,张老师栽5棵,男生每人栽3棵,女生每人栽2棵,总共栽树120棵,问几名男生,几名女生? 解:设男生有X人 女生有(50-X)人。 3x=120-5-2(50-x) 3x=115-2*50+2x 3x=115-100+2x 3x=15+2x x=15 50-15=35(人) 答:男生有15人,女生有35人。 2.大油瓶一瓶装4千克,小油瓶2瓶装1千克,现有100千克油装了共60个瓶子。问大小油瓶各多少个? 1/2=0.5(千克)4×60=240(千克)240-100=140(千克)140/(4-0.5)=40(个)60-40=20(个) 答:大瓶20个,小瓶40个。 3.小毛参加数学竞赛,共做20道题,得67分,已知做对一道得5分,不做得0分,错一题扣1分,又知道他做错的题和没做的同样多。问小毛做对几道题? 这道题可以设小毛做对X道,那么做错(20-X)÷2,没做(20-X)÷2,然后用做对的乘5减去做错的乘1,等于67。 方程: 5X-(20-X)÷2×1=67 X=14 小毛做对14道 4.有蜘蛛,蜻蜓,蝉三种动物共18只,共有腿118条,翅膀20对(蜘蛛8条腿;蜻蜓6条腿,2对翅膀;蝉6条腿,1对翅膀),三种动物各几只? 解:方程假设蜘蛛为x,蜻蜓为y,蝉为Z 那么 x+y+z=18 8x+6y+6z=118 2y+z=20 由此算出 x=5 y=7 z=6 所以 蜘蛛是5只 蜻蜓是7只 蝉是6只

[编辑本段]详细解法

一,基本问题 "鸡兔同笼"是一类有名的中国古算题.最早出现在《孙子算经》中.许多小学算术应用题都可以转化成这类问题,或者用解它的典型解法--"假设法"来求解.因此很有必要学会它的解法和思路. 例1 有若干只鸡和兔子,它们共有88个头,244只脚,鸡和兔各有多少只 ? 解:我们设想,每只鸡都是"金鸡独立",一只脚站着;而每只兔子都用两条后腿,像人一样用两只脚站着.现在,地面上出现脚的总数的一半,·也就是 244÷2=122(只). 在122这个数里,鸡的头数算了一次,兔子的头数相当于算了两次.因此从122减去总头数88,剩下的就是兔子头数 122-88=34(只), 有34只兔子.当然鸡就有54只. 答:有兔子34只,鸡54只。 上面的计算,可以归结为下面算式: 总脚数÷2-总头数=兔子数. 上面的解法是《孙子算经》中记载的.做一次除法和一次减法,马上能求出兔子数,多简单!能够这样算,主要利用了兔和鸡的脚数分别是4和2,4又是2的2倍.可是,当其他问题转化成这类问题时,"脚数"就不一定是4和2,上面的计算方法就行不通.因此,我们对这类问题给出一种一般解法. 还说例1. 如果设想88只都是兔子,那么就有4×88只脚,比244只脚多了 88×4-244=108(只). 每只鸡比兔子少(4-2)只脚,所以共有鸡 (88×4-244)÷(4-2)= 54(只). 说明我们设想的88只"兔子"中,有54只不是兔子.而是鸡.因此可以列出公式 鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数). 当然,我们也可以设想88只都是"鸡",那么共有脚2×88=176(只),比244只脚少了 244-176=68(只). 每只鸡比每只兔子少(4-2)只脚, 68÷2=34(只). 说明设想中的"鸡",有34只是兔子,也可以列出公式 兔数=(总脚数-鸡脚数×总头数)÷(兔脚数-鸡脚数). 上面两个公式不必都用,用其中一个算出兔数或鸡数,再用总头数去减,就知道另一个数. 假设全是鸡,或者全是兔,通常用这样的思路求解,有人称为"假设法". 现在,拿一个具体问题来试试上面的公式.

求小学3年级趣味数学题目及答案10道就行,不要太难!

小猴、小熊、 小狗相约来到街上玩。他们来到超市前一看,一个哈蜜瓜正好30元,于是一人拿10元钱,买了一个瓜。他们刚走出大门,一位营业员跑出来说:“今天我们优惠,只要25元,这是找给你们的5元。”小狗说:“我们分了这5元钱吧!”小熊说:“好!”可小猴说:“这样我们分不完呀!那就一人1元,余下的两块钱再买一包瓜子 。”小狗、小熊都说好。

在回来的路上,小熊说:“我们一人花了9元钱,3人就是3乘9等于27元,又买了一包瓜子,一共花了29元,还有一元钱到哪里去了呢?”小猴和小狗说:“是呀!怎么少了一元钱呢?奇怪?”

小朋友们,你们知道这一元钱哪去了吗?

原来,27元里面就含有买瓜子的2元,再加上每人分的一元钱,合起来刚好是30元,一点也没错。

1.在下列各式的左边添进适当的数学符号,使等号两边变成相等。

321=9,

4321=9,

54321=9,

654321=9,

7654321=9,

87654321=9,

987654321=9。

可用的办法很多,下面是一组参考答案。

3×(2+1)=9,

4+3+2×1=9,

54÷3÷2÷1=9,

(6+54)÷3÷2-1=9,

(76+5)÷(4×3-2-1)=9,

(87-6-54)÷3×(2-1)=9,

(98÷7-6)×5÷4-3+2×1=9。

2.现在有两个自然数,已知两数之和不超过40.甲乙两人,甲知道了两数之和,乙知道了两数之积。

过了一会,甲对乙说:我断定,你一定不知道我手中的数。

又过了一会,乙回答说:可是,我已经知道你手中的数是多少了。

又过了一会,甲回说:我也知道你手中的数了。

这很象在猜哑谜。那么你能推出甲乙两人手中的数各是什么吗?

3.一天,马戏团要举行动物运动会,可乐坏了小动物们。

比赛开始,大象裁判宣布:首先举行的是小狗和小猴参加的100米预赛。

不料,当小狗跑到终点时,小猴才跑到90米处,它气得嘴巴噘上了天!

决赛时,自作聪明的小猴突然提出:"小狗天生跑得快,如果我们站在同一起跑线上赛跑不公平。我提议它的起跑线向后挪10米。"

小狗握住小猴的手表示同意。小猴乐滋滋地想,这样它就会和小狗同时到达终点了。

你说小猴会如愿以偿吗?

4.最近,我们工厂正在调整工作。工作人员A、B、C、D、E、F、G还都不太清楚在开门、关门、擦门把手、洗瓶子、扫地领班、福利干事和工人这七种工作中,谁在干什么工作。

他们当中的四个人被选为工厂代表去参加有关今后十年发展方针的讨论会。他们四个人被称为福利先生、扫地先生、瓶子先生和门先生。尽管他们每个人知道了自己的头衔,但他们不知道别人的头衔。

这四名代表参加会议时根据他们讲的话作了笔记如下:

福利先生:(1)F是洗瓶人。

(2)B是工人。

(3)D不是瓶子先生。

扫地先生:(1)A是工人。

(2)C不是瓶子先生。

瓶子先生:(1)E是福利干事。(2)B是洗瓶人。

门先生:

(1)D是工人。

(2)C是洗瓶人。(3)G的工作与门无关。

很有意思但并不奇怪的是,如果上述每句话中提到的人在场,那么这句话就是对的,而如果话中提到的人是三个不在场的人中的一个,那么那句话就是假的(没有一个人说话中提到自己的名字,会上提到的头衔也不一定与他们现在的工作有关)。

参加会议的四个人是谁?他们现在的工作是什么?

关于“三年级上册数学趣味题10道”这个话题的介绍,今天小编就给大家分享完了,如果对你有所帮助请保持对本站的关注!

(12)

猜你喜欢

发表回复

本站作者才能评论

评论列表(3条)

  • 时光隧道的头像
    时光隧道 2026年01月10日

    我是睿拓号的签约作者“时光隧道”

  • 时光隧道
    时光隧道 2026年01月10日

    本文概览:网上有关“三年级上册数学趣味题10道”话题很是火热,小编也是针对三年级上册数学趣味题10道寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您...

  • 时光隧道
    用户011011 2026年01月10日

    文章不错《三年级上册数学趣味题10道》内容很有帮助

联系我们:

邮件:睿拓号@gmail.com

工作时间:周一至周五,9:30-17:30,节假日休息

关注微信