如何整体把握高中数学课程——高中数学课程主线分析

网上有关“如何整体把握高中数学课程——高中数学课程主线分析”话题很是火热,小编也是针对如何整体把握高中数学课程——高中数学课程主线分析寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。

1、答:函数模块教学分析

函数是数学的重要的基础概念之一,进一步学习的数学分析,包括极限理论、微分学、积分学、微分方程乃至泛函分析等高等学校开设的数学基础课程,无一不是以函数作为基本概念和研究对象的。其他学科如物理学等学科也是以函数的基础知识作为研究问题和解决问题的工具。函数的教学内容蕴涵着极其丰富的辩证思想,是对学生进行辩证唯物主义观点教育的好素材。函数的思想方法也广泛地渗透到中学数学的全过程和其他学科中。

函数是中学数学的主体内容。它与中学数学很多内容都密切相关,初中代数中的“函数及其图象”就属于函数的内容,高中数学中的指数函数、对数函数、三角函数是函数内容的主体,通过这些函数的研究,能够认识函数的性质、图象及其初步的应用。后续内容的极限、微积分初步知识等都是函数的内容。数列可以看作整标函数,等差数列的通项反映的点对(n,an)都分布在直线y=kx+b的图象上,等差数列的前n项和公式也可以看作关于n(n∈N)的二次函数关系式,等比数列的内容也都属于指数函数类型的整标函数。中学的其他数学内容也都与函数内容有关。

由于学生在初中已学习了函数的变量观点下的定义,并具体研究了几类最简单的函数,对函数并不陌生,所以在高中重新定义函数时,重要的是让学生认识到它的优越性,它从根本上揭示了函数的本质,由定义域,值域,对应法则三要素构成的整体,让学生能主动将函数与函数解析式区分开来.对这一点的认识对于后面函数的性质的研究都有很大的帮助。函数是与初中数学最近的结合点。如果初中代数中的内容没有学习好或遗忘的过多,学习本章就有障碍。本章很多内容都是在初中的基础上讲授的,如函数概念,要在讲授之前复习好初中函数及其图象的主要内容,包括函数的概念、函数图象的描绘,一次函数、二次函数的性质等等;又如指数概念的扩充,如果没有正整数指数幂、零指数幂、负整数指数幂的基础知识,有理数指数幂就无法给出,运算性质也是如此,因此在本章教学中要注意与初中所学的有关内容的联系,做好初、高中数学的衔接和过渡工作。

最后注意数形结合思想的培养。函数的内容中图象占有相当大的比重,函数图象对于研究函数的性质起到很重要的作用。通过观察函数图象的变化趋势,可以总结出函数的性质。函数与反函数的函数图象的关系也是通过图象变化特点来归纳的性质,指数函数的性质、对数函数的性质本身就是由函数图象给出的。所以在教学中要特别注意利用函数图象,使学生不仅能从图象观察得到相应的性质,同时在研究性质时也要有函数图象来印证的思维方式。在教学过程中要注意培养学生绘制某些简单函数图象的技能,记住某些常见的函数图象的草图,养成利用函数图象来说明函数的性质和分析问题的习惯。

-------------------------------------------------------------------------------

2答:(1)模块一:直线与圆

主要体现解析几何的基本思想和基本方法,利用坐标法法研究平面几何中直线与圆的位置关系、推理论证、定量计算等问题。

(2)模块二:圆锥曲线

研究三类曲线类型的基本概念、定义、方程与性质,其中包括:椭圆、双曲线、抛物线。以及利用数学软件研究更多的圆锥曲线问题。

(3)模块三:空间几何及向量法在解决其中问题的应用。其中包括:空间的线线关系、空间的线面关系、空间的面面关系,柱体、锥体、球体的重点、难点知识。

数学是研究客观世界中的数与形的学科,而《几何》将数与形有机结合起来,它是数与形的结合点,同时它也是现代数学的基础,是学习高等数学知识的一个切入点,因此中学数学《几何》的教学极为重要。

要学好《几何》要求学生必须建立运动的观点,并用运动的观点思考解析几何的问题,如曲线都是动点的轨迹,直线的平移、坐标系的平移等必须从事物的运动形成过程角度来思考。同时要用变化的观点思考点的坐标及曲线的方程,特别是动点坐标与曲线方程的联系。进入解析几何就进入了一个运动变化的世界,如何向学生展示这个运动变化的世界呢?现代信息技术为我们提供了展示动态的画面的表现效果,使我们动态地展示曲线的形成过程成为可能,这样就更利于学生形成运动的观点和辩证唯物主义的思维方法,促进学生的创新能力和思维能力的提高。

课题研究以我省现行高中数学《几何》教材为蓝本,力求挖掘《几何》的数学思想方法,以形象、生动的方式系统展现解析几何知识及联系。课件的制作主要研究直线、圆、椭圆、双曲线与抛物线的动点轨迹形成过程、图形的性质特征以及直线与圆锥曲线的位置关系的变化过程。

小学数学那些知识点渗透了函数思想?渗透了什么函数思想?

一、教学目标:在实践层面合理调整

高中数学“函数的单调性”的教学过程是这样的:教师引导学生观察一次函数、反比例函数、二次函数等的图像后,给出了函数的单调性等概念,然后组织学生根据图形找出单调区间,运用概念对一些简单函数的单调性做出判断,有位教师甚至把函数的四则运算的单调性和复合函数的单调性在本节课都进行了渗透.从教的角度评析这几节课都很到位,但从学的视角去评价我们就会发现:教师为了营造轻松愉快的课堂气氛,注重了学生学习兴趣的培养,但过于心切,总想尽快地“直奔主题”把主要内容教授完后进行习题训练;而让学生经历实践、猜想、发现、失败、碰壁等得出概念的过程往往在师与生的简单问答中滑过,学生的思维情绪始终处于压抑状态,使得教学无法向纵深发展,知识目标的完成受到影响,学生必要的能力得不到良好训练,学习情感得不到有效激发.

由此,教学设计很有必要从以下几方面进行改进:在新授课(概念的形成、命题的发现)时,应从学生的已有知识和生活经验出发,围绕知识目标展开新知识出现的情境,适当推迟新知识得出时间,丰富学生的情感体验,在知识目标得到有效落实的同时达成能力目标.在习题课上,应以能力培养为核心,注重在知识网络的交汇点设计问题,突出基础知识的应用和基本技能的运用,强化知识目标,广泛建立知识之间的联系,培养学生学习数学的情感.在知识应用课上,应强调数学走向生活,解决具有现实意义的生活问题,培养学生的数学建模能力.

二、教学情境:自然进入愤悱状态

一节课从哪里讲起,这是教师进行教学设计首先要考虑的问题.无论采取何种方式展开教学情境,最为本质的一点是要调动学生生活中的自然感觉,让学生进入愤悱状态学习.例如一位教师教学初中数学“圆”这一概念时,绘制了车轱辘分别是正方形和圆的两辆马车,让学生想象一下,坐上这两辆车的感觉如何.给抽象难懂的数学概念赋予了生活的意义,赋予了一些形象上的依托,使数学变得活泼可爱,促使学生的联想、想象活动近乎无意识地展开,拉近了数学和生活的距离.在具体教学中,教师须根据学生的个体差异、年龄特点、心理特征和生活实际,从学生知识经验的感性认识和理性认识的角度,通过讲故事、做游戏、直观演示、模拟表演等教学手段为学生创设生动有趣的生活情境,营造问题情境,呈现数学问题,让学生以探索者的身份进入现实生活中,真实地感觉到,生活就是数学的“母体”,由此启动学生的思维,诱发学生学习的内在驱动力.这种能沟通“学生的数学”与“课本的数学”之间的关系的教学,让学生能实在地感觉到,数学就在我的身边,并由此引发学生良好的心理投入和积极的行为投入.

三、教学过程:搭建互动交往学习平台

教学过程是师生交往、多向互动、动态生成、共同发展的过程.

没有交往就没有互动,没有互动就不会发生真正的教与学,没有学生真实的“学”的行为发生,教师的“教”是一厢情愿的,教学充其量是“教”的形式上的华丽包装,而无“学”的实质性的本质变化.例如教学高中数学“点到直线的距离”这节课时,笔者发现新教材把顺其自然的一种思路认为运算量较大删去了.在备课中笔者对这种删减进行了深入研究并做了充分准备,设计了直线平行于坐标轴和直线与坐标轴斜交等三个计算点到直线的距离的问题,在课堂上试了一试.结果学生在解答过程中发现的许多解法使笔者异常兴奋,继而根据学生的纷繁思绪,笔者调整了教学思路,删去了有关训练题.

师生经过磋商,推导了“点到直线的距离公式”,并归纳出“相似法、等积法、向量法”等许多解题方法.由此,笔者想到在以往的教学中教师拘泥在编者的思路中“忙”得“不亦乐乎”,学生两眼充满迷茫和疑虑,聆听教师讲解,学生“节外生枝”的想法在课堂中根本不敢也不可能发生.因此,设计符合现代教育思想和教育理念的教学活动过程,必须强调通过师生间、学生间的信息交流,实现师生互动,相互沟通,相互影响,相互补充,从而达到共识、共享、共进.在这样的过程中,①要体现人道的、平等的师生关系,承认教师与学生教学过程的主体,都是具有独立人格的人.②要构建和谐的、宽松的民主氛围.通过师与生、生与生的对话、交流、协作,使学生的情感能得到有效激发而处于积极状态,学生的思维能得到及时畅通而处于宣泄状态,从而将教学活动推向深入.

怎样学习函数?

 函数的核心即是:把握并刻画变化中的不变,其中变化的是“过程”,不变的是“规律”,是相关联的量的“关系”。学生愿意去发现规律并能够将规律表现出来的意识与能力,就是函数思想在教学中的渗透。

在小学低年级,主要发现给定的事物(事物、图形、简单数列)中隐含的简单规律,并以数学方式表示其情境,体验彼此相关的数量。描述事物的定性变化,如“我长高了”;或描述事物的定量变化“我在一年中长了4厘米”;或观察模式,并合理推测发展趋势,如找规律“1、1、2、1、1、2……”“◎□○◎□○……”。这样在早期数的学习阶段通过观察事物的变化,探索模式是学生对函数关系的初步体验。

2001年出版的《全日制义务教育数学课程标准》把探索规律做为渗透函数思想的一个重要内容。因此,在第二学段的知识目标中,要求学生能在具体情境中感悟“规律”,并逐步学会用字母或含有字母的式子表示规律。在这次数学教学比武中,肖老师的《用字母表示数》中猜猜老师的年龄,设计很恰当。从直观入手:生10岁,师比生大19岁,那么师29岁;回忆过去,生上一年级时6岁,师多大;展望未来,生18岁考上大学时,师多大。然后用语言来描述:什么变了,什么没变。通过几组数的计算和自由探索规律,发现随着时间的推移,师生的年龄都在变,可师比生大19岁这个关系不会变。最后把语言描述的关系式即探索出来的规律抽象为代数式,即当生a岁时,师是a+19岁,如果师t岁时,生是t-19岁。这样,从直观(图形、表象)——语言——代数式,三者有机结合,是数学学习的重要途径。肖老在渗透函数思想时,很好地把握了两条基本原则:①创设“变化”的过程,才能感受到函数思想;②激发学生“探究”的本性,于“变”中把握“不变”,满足人的好奇本性。这样探求给定的事物中隐含的规律或变化趋势,使我们不仅能知道过去,还能预测未来,并掌握未来。

在小学阶段,除了用字母表示数,还有许多地方也蕴涵着丰富的函数思想,反映着有规律的事物,只是表达形式不一样:

1、数数,一个一个地数,两个两个的数……,“正”着数,“倒”着数。无论怎么数,都可以让学生体验、发现并描述出在数数过程中的“规律”。

2、计算中的规律:20以内加法表、九九乘法表中也蕴涵丰富的规律,同样,在“和不变”、“差不变”、“积不变”、“商不变”等条件下,两个数之间的关系,实际上,一个数就是另一个数的函数。

3、百数图中的规律:除了横、竖、斜的排列规律,还可以探究每一行中或每一列中相邻两个数的关系,甚至两行两列相邻4个数之间的关系,这些关系可以先用语言表述,然尝试用字母表示。

4、几何图形的变化规律:像一些基本几何图形都可以经过三角形变形而得到,并且面积也有密切的关系。

5、基本数量关系:周长、面、体积公式;总价、单价与数量;工作总量、工作效率与工作时间;路程、速度与时间及正比例、反比例等。

6、统计图:尤其是折线统计图,运行图本身就是函数的图像。

可以说函数无处不在,而小学阶段渗透函数思想,可以使学生了解一切事物处于不断变化的过程中,而且在变化过程中互相联系、互相制约,从而需要了解事物的变化趋势及其运动的规律。这对于培养学生的辨证唯物主义观点,培养他们分析和解决问题的能力,都有极其重要的意义。在小学数学教学中有意识地渗透函数思想,也可以为学生后续学习中学习数学,奠定良好的知识基础与学习经验的准备。

1,首先把握定义和题目的叙述

2,记住一次函数与坐标轴的交点坐标,必须很熟

3,掌握问题的叙述,通法通则是连立方程(当然是有交点的情况)

函数其实在初中的时候就已经讲过了,当然那时候是最简单的一次和二次,而整个高中函数最富有戏剧性的函数实际上也就是二次函数,学好函数总的策略是掌握每一种函数的性质,这样就可以运用自如,有备无患了。函数的性质一般有单调性、奇偶性、有界性及周期性。能够完美体现上述性质的函数在中学阶段只有三角函数中的正弦函数和余弦函数。以上是函数的基本性质,通过奇偶性可以衍生出对称性,这样就和二次函数联系起来了,事实上,二次函数可以和以上所有性质联系起来,任何函数都可以,因为这些性质就是在大量的基本函数中抽象出来为了更加形象地描述它们的。我相信这点你定是深有体会。剩下的幂函数、指数函数对数函数等等本身并不复杂,只要抓住起性质,例如对数函数的定义域,指数函数的值域等等,出题人可以大做文章,答题人可以纵横捭阖畅游其中。性质是函数最本质的东西,世界的本质就是简单,复杂只是起外在的表现形式,函数能够很好到体现这点。另外,高三还要学导数,学好了可以帮助理解以前的东西,学不好还会扰乱人的思路,所以,我建议你去预习,因为预习绝对不会使你落后,我最核心的学习经验就是预习,这种方法使我的数学远远领先其它同学而立于不败之地。

综上,在学习函数的过程中,你要抓住其性质,而反馈到学习方法上你就应该预习(有能力的话最好能够自学)

。函数是高考重点中的重点,也就是高考的命题当中确实含有以函数为纲的思想,怎样学好函数主要掌握以下几点。第一,要知道高考考查的六个重点函数,一,指数函数;二,对数函数;三,三角函数;四,二次函数;五,最减分次函数;六,双勾函数Y=X+A/X(A>0)。要掌握函数的性质和图象,利用这些函数的性质和图象来解题。另外,要总结函数的解题方法,函数的解题方法主要有三种,第一种方法是基本函数法,就是利用基本函数的性质和图象来解题;第二种方法是构造辅助函数;第三种方法是函数建模法。要特别突出函数与方程的思想,数形结合思想 .你还说做题不知道怎样入手,其实函数有很多工具,函数的图像、单调性、奇偶性、周期性、极值,最值、导数等等,这些都是研究函数的工具,也是解题的入手点,先把这些地方的基础题(就是直接要你求单调区间,定义域,值域,周期、奇偶性,导数这一类的题)做好,在相应地做一些应用到这些知识的综合题、类型题,做完之后总结一下,就能发现命题规律与解题思路技巧。

关于“如何整体把握高中数学课程——高中数学课程主线分析”这个话题的介绍,今天小编就给大家分享完了,如果对你有所帮助请保持对本站的关注!

(12)

猜你喜欢

发表回复

本站作者才能评论

评论列表(3条)

  • 幼南的头像
    幼南 2026年01月03日

    我是睿拓号的签约作者“幼南”

  • 幼南
    幼南 2026年01月03日

    本文概览:网上有关“如何整体把握高中数学课程——高中数学课程主线分析”话题很是火热,小编也是针对如何整体把握高中数学课程——高中数学课程主线分析寻找了一些与之相关的一些信息进行分析,如果...

  • 幼南
    用户010311 2026年01月03日

    文章不错《如何整体把握高中数学课程——高中数学课程主线分析》内容很有帮助

联系我们:

邮件:睿拓号@gmail.com

工作时间:周一至周五,9:30-17:30,节假日休息

关注微信