网上有关“比太阳大的星球是什么星球啊?”话题很是火热,小编也是针对比太阳大的星球是什么星球啊?寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。
比太阳还大的星球有:
1、比邻星
比邻星(Proxima Centauri)是南门二(半人马座α)三合星的第三颗星,依拜耳命名法也称为半人马座α星C。它是离太阳系最近的恒星(4.22光年)。它是由当时担任约翰尼斯堡联合天文台的主管罗伯特·因尼斯(Robert Innes)于1915年在南非时发现的。比邻星的一颗行星——比邻星b——可能存在生命。
比邻星位于半人马座,是半人马座α三合星(南门二)的成员之一,距离地球4.2光年,是已知离太阳最近的恒星。
2、红超巨星
红超巨星,恒星名。和其它恒星一样, 在主序时期,氢会结合成氦, 但红超巨星的寿命更短。 一颗 15 倍太阳质量的恒星的核心将在一千万年中用尽它的氢元素。 由于巨大的质量, 其核心处的温度及密度足够高使氦结合成碳并且同时形成氢燃烧壳层。 氦核心可以稳定的燃烧,因为恒星的引力足够大从而可以去控制它。 因为热量由核心产生, 所以恒星的外部会膨胀的比红巨星还大, 就形成了红超巨星(Red Supergiant)。
3、心宿二
心宿二,天蝎座?α 星(天蝎座的主星),位于天蝎座尾部,是全天最孤独的一等星,但在其附近有许多明亮的二等星,也是天蝎座星区中最亮的星星。中国古代又称大火,属东方苍龙七宿的心宿,即龙心,用来确定季节。心宿二是一颗著名的红超巨星,能放出火红色的光亮,每年五月黄昏,位于正南方,位置最高;七月黄昏,心宿二大火星的位置由中天逐渐西降,“知暑渐退而秋将至”。
4、仙王座 VV
仙王座 VV 是一个位于仙王座的双星系统,分别由一颗红特超巨星及一颗蓝矮星组成,这两颗星各自填满了彼此的洛希瓣。这个双星系统距离地球约 4900 ly。
这是一颗食变双星。也就是两颗星互相围绕公共质心公转,它们之间的相互遮掩造成了我们在地球上看去,其星等会发生变化。其主星是一颗红特超巨星。这是恒星晚年期的一种形态,体积极大,密度很小,表面温度也很低。这颗星的半径约为1748~1900R⊙ 。这个半径是很大的,如果把它放在太阳的位置上,都可以把木星包含在内。
5、天狼星
天狼星(Sirius),即大犬座 α 星A(α Canis Majoris A),位于大犬座。天狼星的视星等为-1.46等,是除太阳外全天最亮的恒星,但是暗于金星与木星,绝大多数时间亮于火星。天狼星是一颗蓝白色的主序星,有一颗白矮星伴星,系统质心距离地球约为 8.6 光年。其中天狼星B,即那颗白矮星伴星,是人类最早观测到的白矮星,也是质量最大的白矮星之一。
什么是花芽分化?
在 1920 年,参宿四是第一颗被测出角直径的恒星(除太阳之外)。从此以后,研究人员不断使用不同的技术参数和望远镜测量这颗巨星的大小,而且经常产生冲突的结果。目前估计这颗恒星的视直径在 0.043 ~ 0.056 角秒,作为一个移动的目标,参宿四似乎周期性的改变它的形状。由于周边昏暗、光度变化(变星脉动理论)、和角直径随着波长改变,这颗恒星仍然充满了令人费解的谜。参宿四有一些复杂的、不对称的包层,引起巨大的质量流失,涉及从表面向外排出的庞大冠羽状气体,使事情变得更为复杂。甚至有证据指出在它的气体包层内有伴星环绕着,可能加剧了这颗恒星古怪的行为
天文学家认为参宿四的年龄只有几千万年,但是因为质量大而演化得很快。它被认为是来自猎户座 OB1 星协的奔逃星,还包含在猎户腰带的参宿一、参宿二、和参宿三等 O 和 B 型晚期恒星的集团。以现行恒星演化的晚期阶段,预料参宿四在未来的数百万年将爆炸成为 II 型超新星,并变成一颗中子星。
基本参数
赤经 05h 55m 10.30536s
赤纬 +07 24′ 25.4304″
赤经自行:26.42 0.25 mas/yr
赤纬自行:9.60 0.12 mas/yr
参宿四
视星等(V):+0.50(0.0 ~ +1.3)
光谱型:M1-M2Ia-Iab
B-V 色指数 +1.85
U-B 色指数 +2.06
恒星分类:红超巨星
变星类型:SRc(半规则变星)
径向速度(Rv): +21.0 km/s
恒星视差(π):5.07 1.10 mas
绝对星等(Mv):-5.85
恒星质量:11.6 M 注:(此数据为根据演化模型的 640 ly 计算得出的结果)
距地距离:约为 723.942 ly(222 pc)(根据演化模型为 640 ly)
恒星半径:887 203 或 955 217 R
恒星亮度:9 10^4 ~ 1.5 10^5 L
表面温度:3590 K
自转速度:5 km/s
其他命名:猎户座 α,α Orionis,Alpha Orionis,58 Ori,HR 2061,BD+7 1055,HD 39801,SAO 113271,FK5 224,HIP 27989。
简要介绍
参宿四(猎户座 α,Betelgeuse,源自阿拉伯语,意思是腋下)是全天第十亮星(由于它在亮度变化的关系,有时视星等会超过波江座水委一成为全天第九亮星),亮度在 0.0 ~ +1.3 等之间变化,变光周期为 5.5 年,属于脉动变星。它是一颗 M1-M2 型红超巨星,半径在 684 ~ 1172 R 之间变化,而半径的变化使得它的光度也跟着变化(在 0.0 ~ +1.3 等间变化)。绝对星等 -5.85 等,距离地球约 724 ly,质量约为 11.6 M ,表面温度 3590 K,光度约为 90000 ~ 1.5 10^5 L ,是迄今人类发现的体积最大的恒星之一。因为这些原因,使它成为除了太阳之外,人类首度能够解析出表面大小的恒星。
参宿四猎户座αOri
参宿四是第一个直接用恒星干涉仪测定角直径的恒星。1966 年就已发现参宿四是射电星。射电频谱观测表明,参宿四既有大气射电,也有恒星圆面射电。通过 2.1 米望远镜电视分光装置观测,发现参宿四周围已形成极厚的气壳,至少伸展到本星半径约 600 倍处,这表明该星向星际空间抛出了大量物质。还有人认为参宿四至少有两个星周壳层,它们分别离本星约五十和几百个半径处,膨胀速度分别约每秒钟 11 和 17 km。参宿四的距离迄今难于测准(大约 222 pc),因此关于它的真半径、光度等尚缺乏可靠数据。美国基特峰天文台曾用 4 米望远镜结合星像处理技术获得了参宿四圆面的照片。
在天文学上,参宿四是很有趣的。它是最初几个利用到天体干涉仪测量出直径的恒星之一。天文学家发现它的直径是不定的,由最小的 684 R 到最大的 1172 R ,比木星围绕太阳的公转轨道的直径还要大。
演化末期
如今参宿四已走入生命末期,推测在未来数百万年中,可能变成 Ⅱ 型超新星。天文学家预计参宿四最终会以II 型超新星爆发来结束它的生命,或是其质量只足够变成一颗小质量黑洞。但各方对它还有多长寿命并没有一致的意见:有些人认为它的直径不停变化代表着参宿四正在融合它的碳原子,而会在数千年之内变成超新星;不同意这观点的人则认为它可以生存更久。 如果真的发生超新星爆发,其光度将增至原来的数十万倍以上,约为弦月的光度,也有一些预测指,最大光度甚至可以达到满月的 3 倍。
超新星的光将持续数月,在日间也能看见,然后将会逐渐转暗,在肉眼的夜空中消失,猎户的手臂将消失,在数个世纪之后,将会演变成星云。但是,如果这颗中子星的自转轴是朝向地球,那便较为麻烦了,它释出的高能伽玛射线及宇宙粒子将如雨般直达地球,并将削弱臭氧层,在多处天空均会出现极光。(注:已确认参宿四自转轴与地球夹角约为 20 )
位置结构
在中国的 星座 系统中,都属参宿,首先介绍参宿在天空中的位置、结构以及相关的典故。参宿是冬季星空中最美丽而明亮的星宿之一。在它的北面是五车星官,西面有毕宿大星,东南面有全天第一亮星——天狼星。在参宿的七颗主星中有一颗 0 等星,即本文的主角之一的参宿四;一颗 1 等星,即本文的另一主角——参宿七;五颗 2 等星,即参宿一(猎户座 ζ)、二(猎户座 ε)、三(猎户座 δ)、五(猎户座 γ)、六(猎户座 κ)。
《史记 · 天宫书》说:“参为白虎。三星直者,是为衡石。下有三星,兑,曰罚,为斩艾事。其外四星,左右肩股也。小三星隅置,曰觜,为虎首。”
这段话的意思是说,有三颗星横向排列在星空中,差不多正好在赤道上,称之为衡石,即一块起到平衡作用的石头,因此,衡石的含义,就是赤道的中腰,也是白虎的中腰。这三颗星就是参宿的标志星,参宿之名就源于此。
可见性
参宿四是很容易在夜空中发现的,它就出现在著名的猎户的右肩上,并且肉眼就可以看见它发出的橙红色光芒。在北半球,从每年的一月开始,可以看见它于日落时从东方升起。在 3 月中旬,这颗恒星在黄昏时已经在南方的天空中,而且几乎全球各地的居住者都可以看见,仅仅只有南极洲少数几个位置在南纬 82 更南边的偏远研究站才看不见。在南半球的大城市 (像是雪梨、布宜诺斯艾利斯、和开普敦),参宿四的高度角几乎可以达到地平线上 49 。一旦来到 5 月,就只能在太阳刚西沉之际在西方地平线上惊鸿一瞥了。
参宿四位置
参宿四的视星等是 +0.50,它的平均亮度是天球上的第十亮星,正好就在水委一的后面。但因为参宿四是一颗变星,它的光度变化范围在 0.0 ~ +1.3 之间,因此有的时候它的光度会超越水委一,成为全天第九亮星。参宿七也是一样,它通常的视星等是 +0.13,但报告指出光度有 +0.03 ~ +0.18 的波动,这也可能使参宿四偶尔会比参宿七明亮而成为全天第九亮星。当它最暗时,会比第十九亮的天津四还要暗,并与十字架三竞争第二十名的位置。
来自 ESO 的甚大望远镜所显示的图像,不仅有恒星的盘面,还有以前不知道的被气体围绕着的烟羽伴随着扩展的大气层。
参宿四的 B-V 色指数是 +1.85,说明这是一个颜色非常红的天体。其光球有着扩展的大气层,光谱中呈现强烈的发射线而不是吸收线,这是一颗恒星外面有着浓厚的气体包壳时出现的现象。取决于光球层径向速度的波动,这些扩展的气体曾经被观察到远离和朝向参宿四移动的运动。这颗恒星的辐射能只有 13% 的是经由可见光发射出来,而大部分的辐射都在红外线的波段。如果眼睛可以感觉到所有辐射的波长,参宿四可能会成为全天空最亮的恒星。
视差
自从白塞尔在 1838 年成功的测量出视差,天文学家就对参宿四的距离极为困惑,不确定性使得许多恒星的参数值很难得到正确的估计。准确的距离和角直径将揭示恒星的半径和有效温度,导出清楚的解读热辐射的光度;光度与同位素丰度结合可以提供对恒星年龄和质量的估计。在 1920 年,当第一次以干涉仪研究恒星的直径时,假设视差是 0.18 角秒。这等同于距离是 56 pc,或是 180 光年,这样不仅获得的恒星半径不正确,恒星的特征也不同。在这之后,有些进行的调查将这神秘的实际距离建议为高达 400 pc,或是 1300 ly。
在依巴谷星表公布之前(1997年),有两份受人尊重的出版物有参宿四最新的视差资料。第一份是耶鲁大学天文台(1991)公布的视差是 π = 9.8 4.7 mas,相当于距离大约是 102 pc,或是 330 ly。第二份是依巴谷输入星表(1993),它的三角视差是 π = 5 4 mas,相当于 200 pc 或是 680 ly,几乎是耶鲁估计值的两倍。这种不确定性,使研究人员对距离估计使用宽松的范围,这种现象引燃了许多的争议,不仅仅是在恒星的距离上,还影响到其它的恒星参数。
显示的是美国国家无线电天文台坐落在新墨西哥州索科洛的甚大天线阵 (Very Large Array,VLA)。27 只天线每只的重量是 230 t,需要时可以在阵列中的轨道上移动,以使用孔径合成干涉仪进行详细的研究。
期待已久的依巴谷任务结果终于在 1997 年发表 (释出)。解决了这一个问题,新的视差值是 π = 7.63 1.64 mas,这相当于 131 pc,或是 430 ly。因为像参宿四这种变光星,会造成具体的问体影响到它们距离的量化。因此,大尺度误差很可能是恒星引起的,可能与希巴科斯光度 HP波 段 3.4 mA 级的光中心运动有关。
在这次的争论中,电波天文学的最新发展似乎占了上风。格雷厄姆和同事们使用美国国家无线电天文台 (NRAO) 的甚大天线阵 (VLA),以新的高空间分辨率和多波长无线电对参宿四位置的指引,获得更精确的估计值,加上依巴谷的资料,提供了新的天文测量解答:π = 5.07 1.10 mas,在严谨的误差因子下得出的距离是 197 45 pc 或 643 146 ly。
接下来在计算上的突破将可能来自欧洲空间局即将进行的盖亚任务,它将承担详细的分析每一颗被观测恒星的物理性质,揭示亮度、温度、重力和成分。盖亚将多次测量每一个亮度暗达 20 星等和比 15 等亮的天体位置,精确度达到 24 微角秒,相当于从 1000 km 外测量的人发直径。携带的检测设备将确保能测量像参宿四这种变星在最暗时的极限,这将解决较早时依巴谷任务位置上绝大部分的局限性。事实上,对最近的那些恒星,将能以小于 0.001% 的误差因子来测量他们的距离。即使是靠近银河中心的恒星,距离大约是 3 10^4 ly,距离测量上的误差也将在小于 20% 以内。
光度变化
参宿四的紫外线影像,显示出恒星的不对称脉动,扩展和收缩。
参宿四的紫外线影像
作为胀缩变化恒星"SRc"的次分类,研究人员提供了不同的假设试图解释参宿四反复无常的舞蹈,这导致其视星等在 0.0 和 +1.3 之间的振荡现象。以我们了解的恒星结构认为是这颗超巨星的外层逐渐的膨胀和收缩,造成表面积 (光球)交替的增加和减少,和温度的上升和降低-因此导致测量到这颗恒星的亮度有节奏的在最暗的 +1.3 等和最亮的 0.0 等之间变化着。像参宿四这种红超巨星,因为大气层本来就不稳定因此会通过脉动的方法。当恒星收缩,它吸收越来越多通过的能量,造成大气层被加热和膨胀。反过来,当恒星膨胀时,它的大气层变得稀薄,允许较多的能量逃逸出去并使温度下降,因此启动一个新的收缩阶段。在计算恒星的脉动和模型都很困难的情况下,看来有几个交错的周期。在上个世纪的 1930 年代,Stebbins 和 Sanford 的研究论文指出有一个由 150 ~ 300 天的短周期变化调制成的大约5.7年的规则循环变化周期。
图解的太阳结构显示出光球的米粒斑:
太阳结构显示出光球的米粒斑
1. 核心
2. 辐射层
3. 对流层
4. 光球层
5. 色球层
6. 日冕
7. 太阳黑子
8. 米粒斑
9. 日珥
事实上,超巨星始终显示不规则的光度、极化和光谱的变化,这指出在恒星的表面和扩展的大气层有着复杂的活动。对照于受到监测的大多数巨星都是有着合理的规则周期的长周期变星,红巨星通常都是半规则或不规则的,有着脉动特性的变星。在 1975 年,Martin Schwarzschild 发表了一篇具有里程碑意义的论文,认为光度起伏不定的变化是因为一些巨大的对流细胞(米粒斑的模式)覆盖在恒星表面所导致的。在太阳,这些对流细胞,或是称为太阳米粒,代表热传导的一种重要模式-因未那些对流元素主宰著太阳光球的亮度变化。太阳的米粒组织典型的直径大约是 2000 km 的大小 (大约相当于印度的表面积),深度大约 700 km。
在太阳表面大约有 2 10^6 个这样的米粒斑覆盖着光球,如此巨大的数量产生相对恒定的通量。在这些米粒斑之下,连结著 5000 ~ 10000 个平均直径 30000 km,深度达到 10000 km 的超米粒斑。对照之下,Schwardschild 认为像参宿四这样的恒星可能只有一打左右像怪兽的米粒斑,直径达 1.8 10^8 km 或更大而足以支配恒星的表面,深度达 6 10^6 km,这是因为红巨星的包层温度和密度都很低,导致对流的效率极低。因此,如果在任何时间都只能看见三分之一的对流细胞,它们所观测到的光度随着时间的变化就可能反映出恒星整体的光度变化。
Schwarzschild 的巨大对流细胞主宰巨星和红巨星表面的假说似乎有张贴在天文讨论社区,当哈柏太空望远镜在 1995 年首度直接捕捉到参宿四表面神秘的热点时,天文学家就将它归因为对流。两年后,天文学家揭露至少有三个亮点造成观测到这颗恒星错综复杂的亮度分布不对称,其幅度"符合表面的对流热点"。然后在 2000 年,另一组由哈佛 · 史密松天体物理中心(Cfa) 的 Alex Lobel 领导的小组,注意到参宿四湍流的大气层中冷与热的气流展示出肆虐的风暴。小组推测在恒星大气层中大片活力充沛的气体同时向不同的方向膨胀,抛射出长长的温热气体羽流进入寒冷的尘埃包层。另一种解释是温热的气体在横越恒星较冷的区域时造成激波的出现。这个团队研究参宿四大气层的时间超过 5 年,使用的是哈勃太空望远镜影像摄谱仪在 1998 ~ 2003 年的资料。他们发现在色球层上活动的气泡,在恒星的一边抛起气体,当落在另一边时,好像慢动作翻腾的熔岩灯。
角直径
天文学家面对的第三个挑战是测量恒星的角直径。在 1920 年 12 月 13 日,参宿四成为第一颗在太阳之外曾经被测量出直径的天体。虽然干涉仪仍处在发展的初期,经由实验已经成功的证明参宿四有一个 0.047" 的均匀盘面。天文学家对周边昏暗的见解视值得注意的,除了 10% 的测量误差,小组得出的结论是由于沿着恒星边缘部分的光度强烈的减弱,盘面可能还要大 17%,因此角直径大约是 0.055"。从那时已来,已有其他的研究在进行,得到的范围从 0.042 ~ 0.069 角。结合 历史 上估计的距离,从 180 ~ 815 ly,与这些资料,得到恒星盘面的直径无论何处都在 2.4 ~ 17.8 AU,因此相对来说半径是 1.2 ~ 8.9 AU 使用如同太阳系的标准,火星的轨道大约是 1.5 AU,在小行星带的谷神星是 2.7 AU,木星是 5.5 AU。因此,取决于参宿四与地球的实际距离,光球层可以扩展至超出木星轨道的距哩,但不能确定是否会远达土星的 9.5 AU。
电波的影像显示出参宿四光球层的大小(圆圈)和使恒星不对称的大气层扩展至土星轨道之外的对流力效应。
有几个原因使精确的直径很难定义:
光球收缩和膨胀的节奏,如理论所建议的,意味着直径不是永远不变;
由于周边昏暗造成从中心向外延伸的越远光的颜色改变和辐射衰减越多,而没有明确定义的"边界";
参宿四被从恒星逐出的物质组成的星周包层环绕着。这些物质吸收和辐射光线造成光球层的边界很难定义;
在电磁频谱内以不同的波长测量,每个波长透露一些不同的东西。研究显示可见光的波长有较大的角直径,在近红外线减至最小,不料在中红外线再次增加。报告的直径差异可已多达 30 ~ 35%,但因为不同的波长测量不同的东西,将一种结论与另一种比较是有问题的;
大气层的闪烁使得地面上的望远镜因为大气湍流的影响降低了解像力的极限角度值。
为了克服这些限制,研究人员采用了各种方案解决。天文干涉仪的观念是 Hippolyte Fizeau 在 1868 年最早提出的。他提出经由两个孔洞观察恒星的干涉,将可以提供恒星空间强度分布的资讯。从此以后,科学的干涉仪已经发展出多孔径干涉仪,可以将多个位置的影像彼此重叠。这些“斑点”的影像使用傅立叶分析综合——一种广泛用于审视天体的方法,包括研究联星、类星体、小行星和星系核。自 1990 年出现的自适应光学彻底改变了高分辨率天文学,同时,像是依巴谷、哈柏、和史匹哲等太空天文台,也产生其他重大的突破。另一项仪器,天文多波束接触器 (he Astronomical Multi-BEam Recombiner,AMBER),提供了新的观点。最为甚大望远镜的一部分,AMBER有能力同时结合3架望远镜,使研究人员可以实现微角秒的空间解析。此外,通过组合三个干涉仪#天文干涉仪取代两个,这是习惯用的传统干涉测量,AMBER 能让天文学家计算闭合相位-天文成像中的一个重要组成部分。
目前的讨论围绕着波长-可见光、近红外线 (NIR)或中红外线 (MIR)-获得最精确的角度测量。最被广泛接受的解决方案,它的出现,是由加州大学柏克莱分校的太空实验室的天文学家在中红外线波段执行的 ISI。在历元 2000 年,这个团体,在约翰韦纳的领导下发表了一份论文,以一般不太被注意的中红外线,忽略任何可能存在的热点,显示参宿四均匀的盘面直径是 54.7 0.3 mas。这篇论文也包含理论上承认的周边昏暗直径是 55.2 0.5 mas-假设与地球的距离是 197.0 45 pc,这相当于半径大约 5.5 AU 的外观 (1180 R )。不过,有鉴于角直径的误差在 0.5 mas,与哈珀 (Harper) 的数值有 45 pc 的误差结合在一起,光球的半径实际上可以小至 4.2 AU,或是大至 6.9 AU 。
跨过大西洋,另一组由巴黎天文台佩兰 (Guy Perrin)领导的天文学家在 2004 年以红外线对有争议的参宿四光球半径做出 43.33 0.04 mas 的精确测量。“佩兰的报告给了一个合理的剧本,可以一致性的解释从可见光到中红外线的观测。”这颗恒星看似很厚、温暖的大气层使短波的光线散射因而略微增加了直径,波长在 1.3 μm 以上的散射可以忽略不计。在 K 和 L 波段,上层的大气层几乎是透明的。在这些波长上看见的是传统的光球,所以直径是最小的。在中红外线,热辐射温暖了大气层增加了恒星的视直径。"这些参数还未获得天文学家广泛的支持。
使用 IOTA和 VLTI 在近红外线上的研究,强烈的支持佩兰的分析,直径的范围在 42.57 ~ 44.28 mas,最小的误差因子小于 0.04 mas。这次讨论的中心,是由查理斯汤所领导柏克莱团队在 2009 年的第二份论文,报告参宿四的直径从 1993 ~ 2009 年缩减了 15%,在 2008 年测量的角直径是 47.0 mas,与佩兰的估计相距不远。 不同于以前发表的大部份论文,这份研究专注于一个特定的波长 15 年的视野,早期的研究通常只持续 1 ~ 2 年,并且是在多种波长上,经常会产生截然不同的结果。缩减的角度分析相当于从 1993 年看见的 56.0 0.1 到 2008 年的 47.0 0.1 mas ,在 15 年内几乎缩减了 0.9 AU,或大约相当于 1000 km/h。
天文学家都认为我们完全不知道这颗恒星膨胀和收缩的节奏,果真如此,循环的周期可能是什么,虽然汤认为不存在这样的周期,但它也可能长达数十年,其它可能的解释是光球层由于对流或因为不是球体因而稍微有些不对称,造成恒星绕着轴旋转时外观上的膨胀和收缩。当然,除非我们收集了周期的完整资料,我们不会知道 1993 年的 56.0 mas 是表现出恒星膨胀的最大值还是平均值,或是 2008 年的 47.0 事实上是个极小值。在我们得知确切的数值之前,我们可能还要继续观测 15 年或更久的时间 (2025 年),也就是说,相当于木星轨道半径的 5.5 AU,可能将持续很长的一段时间继续被视为它的平均半径。
体积缩小
参宿四体积缩小近15%
爱德华 · 威什诺说,他们并不清楚为什么参宿四体积会缩减,“对星系和遥远的宇宙,包括快走到生命尽头的红超巨星来说,人们仍有太多的未知”。
研究人员表示,他们接下来仍会继续研究参宿四,观察它到底是继续缩小还是转而膨胀。研究人员还指出,尽管参宿四体积在缩小,但它的亮度在过去 15 年中没有明显变暗[2]。
爆炸
2011 年 1 月 22 日 ,澳大利亚南昆士兰大学高级物理学讲师布拉德 · 卡特博士预言,从现在开始,最迟几万年内,地球上的人类也将能够看到 -12 等左右的亮星,尽管这种奇异景象只会维持几周时间。卡特博士称,猎户 星座 的红超巨星参宿四这些年体积不断缩小,质量急剧下降,这是红超巨星重力崩溃的典型征兆,参宿四随时都可能发生超新星爆炸,那时参宿四的绝对星等将至少达到 -17 等。
简单地讲,II 型超新星就是超巨星在内核坍缩过程中挤压造成的剧烈爆炸形成的。
“这颗衰老恒星的内核已经耗尽了它的燃料,正是这些燃料促使参宿四发出光和热,当燃料耗尽时,恒星就会向内坍缩,引发巨大的超新星爆炸。”当这一切发生时,参宿四的绝对星等将至少到 -17 等,当超新星爆炸的光亮传到地球时,在人类的眼中,将如同在地球上空出现了“第二颗金星”。不过,这“第二颗金星”只会维持几月时间,然后就会在接下来的几年中逐渐暗淡和消失。卡特博士说:“这将成为一颗恒星最后的灿烂,当参宿四爆炸后,它将照耀夜空,我们将在几周时间内都能看到它难以置信的光亮,在接下来的几年中,它会逐渐暗淡,最后再也难以被观察到。
超新星光变曲线图(参宿四属Ⅱb型)
卡特博士称,尽管参宿四可能发生超新星爆炸,但也可能在百万年内的任何一天发生爆炸。 就算参宿四爆炸了,它在天空中的表现也不可能是“第二个太阳”。“星战迷”期待的像卢克·天行者在遥远星球塔图因(Tatooine)上所看到的景象不会出现。
太阳与星星的最显著差别在于它看上去比较大——太阳不是光点,而是像金盘一样挂在天上。天文学上常用角直径描述这种天体的“大小”,即计算天体直径在观测点形成的夹角。离我们越近的或者越大的天体,其角直径越大,反过来,离我们遥远的或者个头小的天体角直径较小。虽然参宿四是角直径最大的恒星之一,而且超新星爆发时直径会急剧增大,但是由于参宿四距离我们太远,所以其角直径依然无法与太阳相比。据推测,参宿四爆发时角直径最大可能是 0.416’(按照爆发后超新星直径 3 倍太阳系直径,距离地球 643 光年计算),这不到太阳的 1/4500,即便是太阳系行星中角直径最小的海王星,也是它的 5倍 以上。参宿四即便爆发了,也还只是一个小点。
参宿四超新星爆发效果图
根据天文学家的推算,参宿四爆发时视星等大概是 -12 等左右,也就是说可以达到满月的亮度,在白天也可以看见。新的模拟结果表明其亮度甚至可能超过 3 倍满月亮度。这对于一颗恒星来说绝对是惊人的,但是和太阳相比依然有不小的差距——太阳的视星等高达 -26.74。根据星等和亮度的关系我们可以计算出爆发的参宿四亮度不到太阳的 50 万分之一。在夜里,参宿四或许会给我们留下一道长长的影子,但是如果想让它把黑夜照得亮如白昼,实在是勉为其难了。
爆炸对地球无害
参宿四随时可能发生超新星爆炸的预测在互联网上引发了热烈的讨论,有人甚至将超新星爆炸同玛雅日历中的 2012 年“世界末日”阴谋论联系了起来,还有网民为了应对可能来临的超新星爆炸,甚至在地下室中储满了罐头食品。
不过卡特博士称,超新星爆炸不可能给地球带来任何毁灭性的结果,因为超新星爆炸释放出的细小粒子——中微子对人体并无害处。
卡特博士说:“当一颗恒星爆炸时,首先我们会观察到一种称做‘中微子’的粒子雨,它们将会穿过地球,即使超新星爆炸会照亮我们的夜空,即使超新星 99% 的能量都会释放到这些粒子中,但当这些微小粒子穿过地球和我们的身体时,却绝对不会对我们带来任何伤害。”
一些专家猜测,参宿四一旦发生超新星爆炸,将会成为一颗中子星,或形成一个距离地球大约 650 ly 的黑洞。卡特博士说:“它形成中子星或黑洞的概率相等,如果让我预测,我认为它更可能形成一个 8 倍太阳质量的黑洞。”
花芽分化是指花卉在苗端分生组织分化为花原基的现象,花芽分化一般要在一定生长程度后营养大量积聚后发生。
1.花芽分化的机理
关于花芽分化的机理问题,有许多学说,一般认为花芽分化是在内外条件综合作用下进行的,营养物质积累是基础,激素和一定的外界环境是条件。
(1)春化作用
有些花卉在个体发育进程中,要通过一个低温周期,才能分化花芽,这个低温周期,称为春化作用。需要通过春化阶段的花卉大部分是越冬的二年生花卉。根据对低温的要求可分二类:
冬性花卉 这类花卉在0~10℃温度30~70天通过春化,近0℃进行最快。例如月见草、毛地黄、美国石竹、矢车菊等,如秋播改为春播,不利于花芽的形成。
春性花卉在5~12℃温度5~15天通过春化,例如一年生花卉及秋季开花的多年生草花。半冬性花卉,对温度要求不敏感,不能低于15℃,高于30℃通过春化,时间15~20天,如紫罗兰。
春化的诱导器官有芽,种子的胚及幼苗,例如紫罗兰是芽,香豌豆是胚。在春化过程没有完成或没有结束前,改换30℃或更高的温度,春化可以解除,已完成春化后就不会解除。
(2)光周期作用
一定时间光照与黑暗的交替称为光周期,光周期不仅控制一部分花卉的花芽分化与成花,还影响花卉分枝习性,地上器官的形成、衰老、脱落与休眠。
花卉有长日照、短日照及中日照三类:菊花、一品红、叶子花、红叶紫苏、仓耳要求8~12时短日照能促进开花;唐菖莆、百合、景天属花卉、木槿、紫薇等要求14~16小时的长日照,可以促进开花。叶片是光周期的感受部位,完全展开前后的叶片对光周期反应最敏感。光敏色素是感受光周期刺激的物质,分生组织中含量最高,它不是开花刺激物,但可以触发开花刺激物的合成,可被激活的物质。
(3)碳氮比学说
Klebs(1903、1918)最早提出,他认为只有当花卉体内糖类的积累比含氮化合物在数量上占优势时,花卉才开始开花。以后Kraus和Kray-bill(1918)通过对番茄的研究,提出了碳氮比学说,既营养生长的强度和花芽的形成取决于碳水化合物与氮的数量之比。提出后获得广泛的支持。1920—1940年期间,经过试验,并证明其正确性,并在环剥、弯枝和生长延缓剂的促花作用中得到满意的解释。但是又发现简单的碳氮比关系往往很难解释互相矛盾的现象,Potter和Phillips(1930)发现,花芽分化形成强度关系最密切的不是淀粉,更不是还原糖,而是不溶性氮化合物,并提出蛋白氮在花芽分化中的重要作用,并提出蛋白氮的含量占全氮量的70%以上时,能促进花芽的形成。只有当糖类含量丰富时,代谢方向转向蛋白质的合成,保证花芽形成有良好的基础。
表1-1 不同C/N比对花卉生长和结实的影响
基里洛娃(1974)曾对碳氮比学说作了修正和补充,她指出,花芽分化需要高含量的蛋白质,高含量的有机磷和较高的淀粉/全氮之比。认为蛋白氮/全氮及淀粉/全氮的比值较高与花芽分化有关,是花卉准备花芽分化的指标之一。
科洛米耶茨(1954、1961)提出,花芽形成具有决定意义的是生长点内营养物质浓度的高低,而不是碳氮比的大小,分化花芽所需要的条件是保证生长点分生组织活跃状态下使细胞液浓度增加到一定的水平(0.6摩尔蔗糖浓度)。
磷是核酸和蛋白质的主要组分之一,磷是参与花芽形成时的必需的结构物质,能量物质及遗传物质的合成,钾、钙、铜等亦与花芽分化有关。
(4)积温学说
该学说认为植物平均发育速度与植物发育期内环境的最低温度以上的温度总和(积温)呈直线关系。例如某花卉从出苗到开花,发育下限为6℃,要积温600℃,当日均温15℃时约需历时40天,20℃需30天。
(5)成花激素学说随着植物内源激素的发现,霍洛得尼(1936—1937)首先提出,植物从营养生长过渡到生殖发育,依植物体内激素含量的变化而转移,正是这些物质决定了花卉的开花。紫拉轩经过长期研究,认为植物的开花决定于成花素,而成花素由赤霉素和开花素组成,并推测开花素可能是一种核酸类性质的含氮物。以后研究发现种子的赤霉素是抑花激素,来自成叶的脱落酸和来自根类的细胞分裂素为促花激素,于是提出了激素平衡学说。
Luckwill(1974)指出,花芽分化在胚状新梢上具有一定临界节数后发生。孕花的数量和时间,决定于促进开花和抑制开花这两类激素的平衡,不需要代谢物的额外供应。促花激素来自叶和根,抑花激素来自种子。随着科研工作的进展,人们已发现调控花卉花芽分化的激素平衡除激动素/赤霉素外,还有激动素/生长素,脱落酸/赤霉素和脱落酸/生长素的比例关系。
(6)遗传基因控制学说与花芽分化核酸是一种遗传物质,它控制着花卉的生长、发育和繁殖,通常与蛋白质结合在一起,以核蛋白的形式存在。基因是核酸分子长链中一个片断或转录单位,遗传信息主要贮存在组成基因的核苷酸序列中。在以脱氧核糖核酸(DNA)为模板合成核糖核酸(RNA)的过程中,遗传信息被转录复制,最后指导对成花具有诱导作用的特殊蛋白酶的合成,从而控制着代谢的过程。目前认为组蛋白可限制细胞染色质上的基因表达,而激素可与这种基因的阻遏物结合,使核糖核酸充分发挥模板作用,这也被称为成花基因的活化。
2.花芽分化的时期
由于花卉花芽开始分化的时期及完成分化全过程所需时间长短不同,可分几个类型:
(1)夏秋分化型花芽分化一年一次,在6~9月高温季节进行,至秋末花器的主要部分已分化完成,翌年早春低温下再进行性细胞分化,翌年春暖时开花。例如牡丹、樱花、梅花、杜鹃等。
球根花卉亦属夏季高温季节进行花芽分化。但存在两种类型,一类如郁金香,秋季种植,生长到翌年夏季,夏季休眠期鳞茎内生长锥进行缓慢的花芽分化,分化适温为17~18℃,超过20℃花芽分化不好;另一类春种球根或一部分秋植球根类花卉如唐菖蒲、美人蕉及百合等,花芽分化在叶片生长到一定阶段后才进行。例如唐菖蒲,早花品种主茎2叶时,晚花品种4片叶时开始花芽分化,要求最低温在12℃以上。
此外还有夏秋分化间断建成型,例如金弹子、山楂、葡萄等,开始分化时间比较早,冬前只有雄花的分化,无雌花的分化,整个休眠期形态分化近于停顿状态,直到次年才进行形态建成开花。
(2)冬春分化型原产温暖地区某些花卉如柑橘类多在12月至翌年3月进行花芽分化,特点是时间短(仅1.5~4个月)并连续进行。金盏菊、雏菊、紫罗兰、三色堇等花卉,低温通过春化进行花芽分化,长日照下开花。
(3)当年一次分化的开花类型
一些当年夏秋开花的种类,在当年的新梢上或茎锥顶端形成花芽,如紫薇、木槿、萱草、菊花等。
(4)多次分化型
一年多次发枝,每次枝顶均能形成花芽并开花,如月季、倒挂金钟、香石竹等木本及宿根花卉。当新梢生长一定长度时,顶端停止生长,花芽逐渐形成。在顶花芽形成的过程中,其他侧枝上又形成花芽,四季多次开花。
(5)不定期分化型每年只分化一次花芽,但无一定的时期,只要达到一定的叶面积就能开花,如凤梨科和芭蕉科的某些种类。
3.花芽分化的过程
所谓分化,原是指花卉的个体发育过程中,细胞向不同的方向发展,各自在构造和机能上由一般变为特殊的现象。花芽分化是指营养性的芽转变为生殖性的芽的现象。花芽分化可分生理分化与形态分化两个阶段。生理分化是指生长点细胞内发生质变,出现代谢方式以及生化成分方面的变化的时期。形态分化是指芽的解剖形态及组织细胞等方面出现花芽标记的时期。生理分化出现在形态分化前的1~7周。
花卉的花芽形态分化过程,依其不同分化深度的形态标志可划分为数期,种类不同,形态分化的过程和形态标志也有差异,大体上可分为:①分化前期,芽生长点已通过生理分化,虽在细胞化学的成分上已有改变,但在形态上未分化芽的生长点并无区别,其特征是生长点低平、微凸,由形态一致的原始分生组织细胞所组成,在其外侧可见到正在分化的苞片原基和鳞叶原基的突起。②分化始期及花序分化期,多数花卉可见到生长点增大变圆,隆起呈半球形,以后顶端又逐渐变宽变平,生长点下方出现大而圆和排列疏松的初生髓细胞,有花序的花卉,在生长点始分化后在中央周围隆起,并发育成中心花及侧花原基。③花器各原基分化期,在生长点变平后中心部凹入,四周由外向内依次产生突起,此即花萼、花瓣、雄蕊和雌蕊原基,相应标志各期分化的开始。花部分生组织活动通常按向顶顺序发展(石榴例外)。就全树而言,花芽的形态分化是前后交错,相互重迭地进行,特别是分化始期的进程极不整齐,夏秋分化的花卉,开始分化有早有晚,但到休眠期都能停止分化。性细胞成熟期,就是花粉和胚囊的发育时期,一般当花粉和胚囊成熟时,花朵即可开放。
图1-1 牡丹花芽形态分化
图1-2 山茶半重瓣松球型品种花芽形态分化进程
1.萼片分化初期 2.生长锥下陷 3.花瓣分化期 4.雄蕊分化期 5.雌蕊分化初期 6.雌蕊分化后期牡丹花芽分化过程见图1-1,山茶的花芽分化如图1-2、图1-3所示。茶花的花芽一般在春梢及树冠外围上中部枝条的顶芽发生,下部与内膛的芽往往发育不良形成败育花,但亦有春梢下部的芽先发育成花芽,形成花朵自下而上的开放,如“葡萄红”品种。亦有的花自内膛向树冠外围开放如“紫袍玉带”。在浙江温州地区,花芽分化在5月下旬至6月下旬开始,9月中旬至10月中旬结束,雄蕊瓣化于11月下旬开始,不同品种,芽的部位及芽的大小,花芽分化及雄蕊瓣化时间有长短。
图1-3 山茶重瓣类芙蓉型品种雄蕊芽分化过程
1.雄蕊瓣化初期 2.中期 3.后期
山茶花是属单花,但“二乔”品种还出现头状花序,即同一原基上分化出2朵无柄单花,见图1-4。单瓣及半重瓣的花芽分化过程是花原基→萼片原基→花瓣原基→雄蕊原基→雌蕊原基,分化进程快,历时5~6个月。重瓣花的分化过程是在雌蕊原基后增加雄蕊瓣花。雌蕊瓣化2个过程,见图1-5。分化进程慢,历时约8~9个月,瓣化11月开始至翌年2~4月才完成。瓣化顺序有离心式向外分化,向心式向外向内分化及离心式自内向外瓣花3种形式。山茶的台阁现象与牡丹不同,上方花不是下方花开放后发育而成的,并非是一个花原基上分化上下重叠的两朵花,应属于雄蕊离心瓣化楼子型花的初级形式的表现。
图1-4 山茶头状花序形态特征
1.一枚花柄,一组花萼 2.一个总苞(即一组外轮花瓣) 3.二枚发育饱满的花蕾
牡丹的形态分化始于6月上中旬,结束于9月下旬至10月中旬,雌雄蕊的瓣化发生于11月初,重瓣低的品种,分化进程快,历程3个月。重瓣多的品种进程慢,约6~7个月,各品种雌雄蕊瓣花时期虽有早晚,多数发生在年底年初,2月下旬至3月中旬瓣化成形出现皱花形态,雌蕊原基早于雄蕊原基的出现,凡芽长0.5厘米以上,宽0.3厘米以上均能成花,花大,分化早。
牡丹花器的分化按定位分化原理,数量稳定的是萼片与雌蕊,花瓣与雄蕊变化较大。花瓣原基均切线向心式自外向内层层分化,雄蕊则离心式分化。有些品种出现两朵重叠现象,在同一个花原基上,分化出上下重叠两朵花,但下方花先开。
腊梅除主芽外,还有1~2个副芽。花芽分化有春梢花芽分化和夏梢花芽分化,5月中旬开始春梢花芽分化(扬州),分化集中整齐,夏梢随生长减缓时开始分化。
图1-5 山茶头状花序的形态分化(品种:二乔)
1.初期扁圆形 2.膨大开裂成二个半圆形花蕾 3.在总苞内逐渐发育饱满二花蕾 4.二个充分发育的花蕾 5.开放后形态
图1-6 腊梅花芽分化过程(1×23.6)
1.形态分化过程 2.花被片分化期 3.雄蕊和花托附属物分化期 4.雌蕊分化期 5.药室分化期 6.胚珠分化期
A.对生的雏叶 B.花被片原基 C.雄蕊原基 D.花托附属物原基 E.雌蕊原基 F.药室 G.胚珠花芽形态分化前期在3月初随芽的萌动,新梢腋芽原基开始分化;花被片分化期在5月上旬,出现第一轮螺旋状花被片原基,5月中旬大量出现,分化期持续1个月;5月下旬开始雄蕊和花托附属物分化期;6月中旬开始雌蕊分化期;8月中下旬春梢花芽与叶芽已明显区别,横切始见圆形药室,10月下旬至11月上旬可见花粉粒。9月上中旬纵切始见圆形胚珠,详见图1-6。腊梅的花芽集中在春梢中下部和顶部,中短枝每个叶位均可形成花芽。花芽分化一般在5月自剪后加粗生长期。13节以内的春梢占花芽数的80%以上。
大丽花形态分化可分营养锥、生殖锥、总苞分化、舌状花分化及管状花分化5个时期。花芽分化顺序是向心的。顶花芽和侧生花芽均由营养锥分化而成,舌状花为单性花,管状花为两性花。短日照,早扦插,营养水平高,花芽分化好。
大丽花扦插后经100天,营养锥可转化为生殖锥,营养锥顶端尖且有一对旗叶原基,旗叶的出现,是营养锥阶段的结束,生长锥变得平滑,宛如馒头状,此过程1周内完成。顶端两片复叶小叶叶尖开始交叉生长,同时叶柄基部开始膨大,呈径向生长,是肉眼区分花芽的经验指标,时间从7月中下旬开始,至8月中下旬完成,总苞分化约1周时间,而后在生殖锥周围形成很多小突起,这是舌状花原基。管状花位于头状花序的中部,花蕾冠幅达到2厘米时,舌状花分化完毕,管状花原基开始出现,管状花长约3毫米时,雌雄蕊原基开始分化。
香百合的花芽分化分为茎端未见分化,花原基形成,外层花瓣原基形成,内层花瓣原基形成和雌雄蕊形成5个时期。花芽分化开始时,茎端出现2个或2个以上明显的圆球状突起,一般在4月初,株高10厘米左右或茎节超过10节,外花瓣原基形成可见3个明显的外轮花瓣原基,内花瓣原基出现在外瓣的间隙处,将花芽剥去6个花瓣原基可见6个雄蕊与1个雌蕊。
关于“比太阳大的星球是什么星球啊?”这个话题的介绍,今天小编就给大家分享完了,如果对你有所帮助请保持对本站的关注!
评论列表(3条)
我是睿拓号的签约作者“悦琳悦”
本文概览:网上有关“比太阳大的星球是什么星球啊?”话题很是火热,小编也是针对比太阳大的星球是什么星球啊?寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助...
文章不错《比太阳大的星球是什么星球啊?》内容很有帮助